
INTRODUCTIOS - 
In this paper the initial post-buckling behavior of a spherical shell 

subject to external pressure loading is determined on the basis of Koiter's 

general theory of p~s t -bcck lhg  beb~t ior .  (') 

most inportant features of this problem show a striking SirCilarity to aspects 

present in the behavior of cylindrical shells under axial compression. 

As d g 3 t  vel1 be wetted, the 

Imperfections in the s h e l l  geometry are found to have the same severe effect 

on spherical shells as ha3 been demonstrated for axially campressed 

cylinders. (1) 9 (2) 
- 

Perhaps the mair? feature which distinguishes this investigation from 

previous work is that here consideration baa not been restricted to rotationally- 

symmetric buckling deformations. 

initial post-buckling behavior is decidedly not rotationally-symmetric but is 

znalogous to the cylindrical shell behavior in which a number of mdes combine 

In fact, it is clearly demonstrated that the 

ta give rise to the highly imperfection-sensitive character of the structure. 

Th4QPs0d3) has also employed the Koiter theory to study the initial post- 

buckling behavior of the complete sphere. 

fundamentally different than that taken here because of the restriction to 

His approach, however, is 

rotationally-symmetric deformations. This work will be discussed further in 
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the body of the present paper. Other investigators ''' ,(" ' ( 6 )  have deternined 

the large-deflection behavior with the aid of various methods but in each case 

under the above mentioned assumption of rotational symmetry. The large- 

deflection, rotationally-symmetric equilibrium configurations appear to be in 

reasonable agreemeEt with experimental observations in the same large-deflection 

range . 
To obtain a clear understanding of the effects of imperfections on the 

buckling strength of this structure it is necessary to study its initial post- 

buckling behavior. It is this study which forms the substance of the present 

paper. 

SHALLOW !%ELL EQUATIONS 

Sonlinear shallow shell equations will be employed in this analysis. The 

consistency of applying this representation to the complete sphere will be 

discussed as the analysis proceeds. In anticipation, however, we remark that 

the adequacy of this description follows from the fact that the characteristic 

buckle wave lengths are small compared to the shell radius. Thus, it is possible 

t o  choose a shallow section of the shell surface in which the buckle pattern is 

duplicated many times.? For essentially the same reason, the initial post- 

buckling behavior of an axially compressed cylinder can also be obtained within 

the context of shallow shell theory (which for cylinders is identical to non- 

linear Dosmell theory). 

A shallow section So of the suhere is imagined to be isolated as shown 

-I- Here shallow is taken in the sense that the slopes of the surface 

measured from the section base are small and, thus, the shallow shell 

approximations are valid. 
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e in Figure 1, Cartesian coordinates x and y are chosen in the base plzne 

of the shallow section and z is normal to this plane. The stress-strain 

relations and the benaing strain-displacement relations of shallow shell theory 

are linear while the membrane strain-displacement relations are nonlinear. 

Listed here are these nonlinear relations, which along with the other shallow 

shell equations, are given, for example, by Sanders. (7) The membrane strains 

E E. and E zre gi-za izz +,ems of the tacgeszia?. displacements CT and 

V and the normal displacement W by 

.- 

x' y XY 

E = F(u,y+v,x) I + 1 w w 
XY SX 9Y 

where B is the radius of curvature of the spherical section. 

The three equilibrium equations of nonlinear shallow shell theory can be 

replaced by ope equilibritrm equation and one compatibility equation written in 

tenns of W and a stress function F . These two equations are 

1 DV4W + V2F - F W - F W + 2F W -p ,= ,YY S Y Y  *= Y x y  Y X P  

-V4F 1 - g V 2 V + W  1 W - W2 0 
Eh ,= Y W  Y X Y  

(3) 

where D = Eh3/12(1-v2) , E and v are Young's I-lodulus and Poisson's Ratio, 

h is the shell thickness, V4 and V2 are the two-dimensional biharmonic and 

Laplacian operators, and p is the external pressure. The resultant membrane 

stresses are given in terms of the stress function by 

and N = -F 
s N Y = F  ,= X y  Y X Y  

Nx = F 
¶W 
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CLASSICAL BUCKLING ANALYSIS 

Pr io r  t o  buckling the perfect  spherical  s h e l l  is i n  a uniform membrane 

1 s t a t e  of stress 

displacement Wo = -(1-u)pR2/EIQ. With 

(!?: = No = - 5 pX) with an associated inward r ad ia l  
Y 

F - T(X'+JT~)PR 1 + f 

and 

W = -(l-v)pR2/E%2+ w 

f and w are zero p r io r  t o  buckling. The c r i t i c a l  pressure p , often 

cal led the classical buckling pressure, a t  which bifurcat ion from the pre- 

buckling state of stress occurs is predicted by the  1fl;ear buckling analysis. 

The l i n e a r  buckling equations are obtained by siibsti tuting fo r  F and W into 

Equations (2) and (3) and the3 l inear iz ing with respect t o  f and w . One 

C 

finds 

(4) 1 1 DV4w + g V2f + pRV% = 0 

and 

Periodic solutions 

in the form of products 

( 5 )  L V 4 f  - - v % = o  1 
Eh R 

t o  these hornogeneous eigenvalue equations are sought 

of sinusoidal functions such as 

w = cos(kx z)cos(ky E) 

f = B cos(k, z)cos(k X x, Y R  

The eigenvalue associated with t h i s  choice is 

p = (kqk2)" + ~ - ~ ( k ~ + k ~ ) ]  
R X Y  0 X Y  

(7) 

with B = -EhR(ki+k2)-1 and where 
Y 

q; 5 12(1-u2)(?) 2 
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- The classical buckling pressure is found by minimizing p as given by 

Equation (7) with respect to kx and k This critical pressure is Y 
2E h 2  pc = 4Eh/Rq2 = 

and k satisfying Y and is associated with any combination of wave numbers kx 

k2 + k2 = qz 
X Y  

This critical pressure, obtained on the basis of shallov shell theory, is 

exactly that predicted by equations for a full sphere (see, for example, 
(81 1 Flugge . 

The shallow shell representation of the portion So of the complete 

sphere can only be valid if the wave lengths of the buckle pattern are small 

compared to the radius of the shell, or what is the same, if the wave numbers 

k and k are both large compared to unity. Associated with the critical 

buckling pressure is a multiplicity of buckling modes and, as seen from 
X Y 

Equation ( 9 ) ,  combinations of kx and k are possible such that both are of 

order q, and, therefore, sufficiently large. An exception to the requirement 

of large wave numbers occurs if either k, or k is identically zero, that 

is, if the buckling deformation is independent of either x or y In such 

Y 

Y 

cases, as well, the 5hallOW shell description is accurate for shallow sections 

of a complete sphere. This is analogous to the situation for axial buckling 

of cylinders for which the shallow shell equations are accurate for the axi- 

symmetric mode but not, for example, for the Euler column mode in which only 

one wave length, in effect, spans the shell circumference. 

The initial post-buckling behavior of the spherical shell is investigated 

in the remainder of this paper. It will be seen that sets of either two or 

three of the buckling modes associated with the classical buckling pressure 
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t. - couple to give rise to a load-deflection behavior which falls sharply in the 

initial post-buckling regime. As previously indicated, the analysis will be 

carried out within the framework of Koiter's general theory of post-buckling 

behavior. This theory is outlined in the next section. 

KOITER THEORY FOR I.NLTI-MODE BUCKLING 

The procedure which is sketched below is an application of the variational 

principle of potential energy to obtain equations characterizing equilibrium 

in the prebuckling and initial post-buckling reginee of a structure with a 

multiplicity of buckling modes associated with the critical buckling load. 

These equations are in the form of simultaneous nonlinear, algebraic equations 

relating the magnitude of the externally applied load to the deflections in the 

various buckling modes. The magnitudes of assumed geometrical imperfections 

also appear. 

here I s  taken for the most part from Reference 9. 

this reference or Koiter's(l) own work for certain arguments and points of 

The notation and development of Koiter's general theory displayed 

The reader is referred to 

rigor which there is no need to re-establish here. 

Generalized stress, strain and displacement fieids are denoted by (T , 
e and u , respectively. The magnitude of the applied load system is taken 

to be directly proportional to the load parameter X . 
The potential energy expression for the structure is conveniently written 

in the compact form 

where, of course, the stresses and strains are calculated from the kinematically 

admissible displacement field u . Here, in general, € ( T * , C " ~  denotes the 

internal virtual work of the stress field u' through the strain field E" ; 
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- and ABiiuj is the work of the applied force field of intensity X through 

a displacement u of the structure. 

We consider only structures which can be adequately described by nonlinear 

strain-displacement relations of the form 

where L1 and Lp are homogeneous functionals which are linear and quadratic, 

respectively, in u . Furthermore, the stress-strain relations are assumed to 
be linear and are written symbolically as 

a a HI(E) 

where Hi is a linear, homogeneous functional of the strain components. The 

set of nonlinear shallow shell equations are of this form. Uith this notation, 

for example, L2 is zero in calculating the bending strain while L2 is 

w2 in calculating cx . 
,x 

A n  initial deviation of the unloaded structure from the perfect form 

is called the initial imperfection. 

the strain arising from an additional displacemenc u is 

In the presence of an initial imperfection 

where i..11(u,G) = Lll(G,u) is the bilinear, homogeneous functional of u and 

u which appears in the identity 
- 

- 
L2 <u+t> = L2(u) + ZL, 1 < u , a  + L, (u) 

(As an illustration, if the initial deviation of the shell middle surface from 

a spherical shape is denoted by then by shallow shell theory cx is, using 

(1) and (13) , U,, + W/R + y I ? ~  + G? 6 
displacement. ) 

1 where w is the additional radial ,x ,x ,x 

It is assumed that there are several linearly independent buckling modes 
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u:". u:'), . . . , associated with the critical value of the load parameter 
X . The complete displacement of the structure is written quite generally as 
C 

w5ere 

to the external load intensity corresponding to A . For the spherical shell 
under uniform pressure this is just a uniform radial displacement. 

modes u 

The orthogonality condition is 

Xuo is the prebuckling displacement of the perfect structure saibject 

Each of the 

?I . are taken orthogonal to one another and each is orthogonal to (i) 
C 

-Y 
where u = H1[Ll(uo)] . Imperfections in the form of the buckling modes/result 

in  significant reductions of the buckling load; thus, we take 
0 

Now, the potential energy is evaluated using the expression for u and 

with Equations (12)-(14) and the orthogonality conditions. The result is 

&E2 3 8 . 0  (16) 

to and including third powers of 

the 6's and imperfection term like Ct in the potential energy are displayed. 

This expression for a "quadratic structure" is in the form given by Koiter 

[(1), Eq. (28)J. It is noted that 3 does not appear in potential energy 

since it contributes to quartic but not cubic terms in the E's. The potential 
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- energy expression in the truncated forn given here can provide an accurate 

description of the structure only so long as the 5's 

are sufficiently small to insure that the terms neglected are small compared 

to those retafned. 

- 
5's and imperfections 

Equilibrium equations relating the Si's to the load parameter X are 

obtained from the requirement that the first variations of the potential energy 

with respect to the 5 's vanish. These equations are i 

(17 1 A -  
= - 5, i = 1*2,... 

k~~ally, we give the generalized load-deflection relation for a perfect, 
multi-mode structure, obtained from Equation (10) with the aid of the 

auxiliary equations, nazoely _ -  

where u = h u is the prebuckling displacement at the buckling load and from 
Equation (lo), B1 (u) 

external loading system acts. 
LwSL-BUCKLLNG OF SPHEKlCAL SHBLL: TWO OPEBATIVE MODES 

oc c o  
represents the generalized displaceEent through which the 

In fom2ng the nonlinear equations of equilibrium for the spherical shell 

it is necessary to take into account all the buckling modes associated with the 

critical buckliug pressure, that is, all modes whose wave numbers satisfy 

It will be shown that the nonlinear equations for the 

separate sets of equations corresponding to interaction between either two or 

e's decouple into 
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three of these cri t ical  modes. 

operative modes has a zero wave number associated with e i the r  the x or  y 

coordinate. This case is considered f i r s t  and the three mode s i tua t ion  is  

discussed i n  the next section. 

Two modes w i l l  i n t e rac t  when one of the 

Translating from the  general notation t o  the shallow s h e l l  notation, we 

take as uil) 

w(l) C = h coe(qo 2) 
with the associated stress function 

f C ( l )  = -ERh2qi2 cos(qo E) 
C)f a l l  the modes sat isfying ( 9 ) ,  only a mode with 

k = 6 4,/2 , w i l l  in te rac t  with wL1) , as w i l l  be shown. For ui2) take 

kx = qo/2 , and thus 

Y 
1 x  

W C (2) = h s in ( r  qo z ) s i n ( F  qo 

The coeff ic ients  of t h e  various terms i n  t he  equilibrium equations(l7) are 

eas i ly  calculated. Some of the de t a i l s  are shown below. F i r s t  

= -- 2~h3 I (sin q, ?)'dS 
R2 so 
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where S is the area of the s'haliow section. Consistent with the fact that 
0 

the buckle wave lecgth is short compared to the characteristic length of the 

section So only the constant part of sin2qo x 1  = T(l-cos 2q0 E) is evahated 

in arriving at the above expression. Similarly 

and 

3C Eh3 
t - -- 

l6 R2 

where C = J--- 3(1-v2) . This last coefficient,which gives rise to coupling 
between w(') and w ( ~ )  

were not 

, would van3sh if the k, associated with wA2) C C 
1 The other non-zero coupling coefficient is P o  

{si2),Li1(u(') , u ( ~ ) ) )  p I [f(2) w(l)w(') - f(2) w(1),(2)]ds 
C C s CYPY c,x CYX CSXY CYX CSY 

while 

Lastly 

With these coefficients the two equilibrium equations for 51 and 52 

in terms of the external pressure p become 
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and it is important to note that the deflections in the modes, 41 52 , 
as well as the imperfection magnitudes, E1 and 52 , are measured relative 
t o  the shell thickness. 

in Equations (19) and (20).T 

and 

This follows from the choice of wS1) and w ( ~ )  
C 

For the perfect shell (z1=&=0) Equations (21) and (22) admit only the 

trivial solution when the prebuclcling pressure is less than the critical value 

pc . When p attains p, bifurcation from the membrane state of stress occurs, 

and the equilibrium equations are easily solved for 51 and 52 : 

This behavior, sketched in Figure 2, is characteristic of a "quadratic type" 

structure and has been discussed by Koiter'l) In  some detail for the general 

case. The equilibrium pressure in the post-buckling regime is greatly 

reduced even where the buckling deflections are only a small fraction of the 

shell thickness, i.e., 61 and E2 a small fraction of unity. 

The generalized load-deflection relation valid in the initial post-buckling 

region is easily calculated using Equation (18). The generalized displacement 

Bl(u) in this case corresponds to the average normal displacement, wave 9 of 

the shallow section. One finds 

(1- Jb a V e * P +  - 
W 

PC 27 ( 1-V) wo pc 
C 

(23) 

. iF h is the prebuckling normal displacement at the where W: = - I  

I- Note that Equations (21) and (22) as well as the predictions to be 

3 (l+u) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

obtained from them do not depend on the area of the shallow section So . 
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bifurcation pressure. 

An fnmerfect shell- suffers deflections in the buckling modes with the 
- 

first application of external pressure. The behavior for the case 52 0 , 
51 > 0 
- 

is also depicted in Figure 2. Prior to buckling the load Increases 

with deflection in the 61 mode with - 
51 PIP, 

= 1 - P/P, 
until the coefficient of 62 in Equation (22) 

bifurcation occurs. Following bifurcation the 

deflections occurring in both modes; and thus, 
5 

vanishes. At this point 

equilibrium pressure fal ls  with 

the maxfmum (buckling) pressure, 

denoted by p- , is the bifurcation pressure which satisfies 

Small Imperfections (relative to the shell thickness) result In large 

reductions of the buckling pressure as shown in the plot of (25) In Figure 3. 

If 0 but 52 # 0 , the maximum value of 

substituting for 51 in terms of 52 from Equation 

and determining then the value of p such that dp 
a52 

p is obtained by 

(21) into Equation (22) - 0 . One finds 

This fonnula I s  also plotted in Figure 3 and it is seen that an imperfection 

in the form of the 

in the 51 mode. 

62 mode causes &.greater reduction than an equal Imperfection 

TRR,EE OPERATIVE BUCKLING MODES 

Interaction between two modes occurs only if one mode has a zero wave 

If we had chosen v c )  = h coa(qox/2a)sin(J;jqoY/2R) instead of (20) 

Equation (2s) would be (1-p /pCl2 = -9Ctlp /8pC and thus valid for zl < * *  
* * 

. 
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I. number; otherwise, the modes will interact  in sets of three. To i l l u s t r a t e  

such a s i tua t ion  

and 

we take as uL1) , u:~) and 

where by, Equation (91, a i  + 8: - 1 (i=1,2,3) . 
The coeff ic ients  i n  the algebraic equilibrium equations are evaluated in 

much the  same manner as in the  last section. 

will occur only  if coeff ic ients  such as 

Evaluating t h i s  term we find 

Coupling between the  three modes 

do not vanish. (S,(1),L11(U62),u~3))) 

if ap+a3 = 01 and B1+B2 = 8 3  but is zero otherwise.' These two equations 

along with the conditions 0?$1 * 1 uniquely determine the  magnitudes of any 

f i v e  of the  a ' s  and 6 ' s  in terms of the remaining one. From t h i s  f o l l o w s  the 

vanish, for  example 0r2+a3 = -a1 and 81+62 = -$3 , but these are, i n  

e f f ec t ,  included within the cambination listed above. 
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3 . statement made earlier that the  equilibrium equations decouple in to  sets made 

up of three interact ing modes unless, of course, one mode wave number is zero. 

Then the three mode case degenerates t o  the  case discussed i n  the l a s t  section. 

The remaining nonlinear, coupling coefficients are non-vanishing only 

under the  same conditions and a r e  easily found t o  be 

and 

with all others zero. Finally,  

i = 1,2 ,3  

The coeff ic ient  of the  nonlinear term i n  each of the  three equilibrium 

, independent of 9c Eh3 This coeff ic ient  reduces t o  a constant value, - -- 
which three mode set is under consideration. Thus, the three equilibrium 

32 R2 

equations f o r  a given decoupled set a re  

If a three mode set is operative in the  i n i t i a l  post-bukcling deformation 

of the  per fec t  sphere, then 

16 
51 - 52 - E3 = $1- 

PC 
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4 and the generalized load-deflection relation, again using Equation (18), is 

32 (1- El2 
W -..o+ ave --I -̂ 

PC 27 (1-V) wo pc 
C 

One notes that the load-deflection relation for the three mode case differs from 

that for the two mode situation. The initial post-buckling load-deflection 

curves for both cases are plotted in Figure 4. 

If the shell is inmerfect with an imperfection in only one of the modes, 
- 
53 > 0 say, the prebuckling deformation is in the 5 3  mode 

- 
53 PIPc 

53 = 1- PIPc 

Bifurcation from this solution will occur at the value of p when the 

determinant of the coefficients of 61 and 52 in Equations (28) and (29) 

vanishes. This gives the buckling pressure of the imperfect shell which is 

found to be 

* * 
2 9 c -  p 

PC PC 
(I- e) = 16 53 

This relation is plotted, along with the results for two mode situation, in 

Figure 3. A single imperfection in the three mode case is not as degrading 

as a single imperfection when two modes are operative. 

DISCUSSION OF THE RESULTS 

The equilibrium equations of the general theory decouple into sets of 

either two or three interacting modes. 

is actually operative in the initial post-buckling regime of the perfect sphere 

is indeterminate within the context of the general theory. 

parallels the initial post-buckling situation for axially compressed 

The set, or combination of sets, which 

This indeterminacy 

cylindrical shells which Koiter studied via his general theory. Like the 
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spherical shell, the cylindrical shell has a multiplicity of buckling modes 

associated with the classical buckling load: but unlike the sphere, the 

modes can couple through the nonlinear term in the equilibrium equations. The 

relative magnitudes of these d e s ,  however, remain undetermined by the general 

theory. 

determined by the general theory. 

@.e., p vs. w 

theory but depends on whether a two or three mode set is operative. Quite 

likely the indeterminacy in both problems would be removed if higher order 

terms were retained in the potential energy expression. 

On the other hand, the load-end shortening relation is uniquely 

The generalized load-deflection relation 

) for the sphere is not uniquely determined by the general 
aVe 

Bn imperfection in the form of any given mode has the effect of 

determining which set of modes will be operative. 

appears to cause the greatest reduction in the maximum support pressure is 

that in the form of the E2 mode of the two mode case (see Equation (26)). 

For axially compressed cylindrical shells, imperfections in the form of the 

axisymmetric buckling mode are most critical. (2) 

load to Imperfection €or cylinders with this imperfection is 

The Imperfection which 

The relation of buckling 

(1-r) A *  2 =--ET 3c a* 
C 

2 
C 

* 
where 

Here, the imperfection magnitude is measured relative to the shell thickness 

in the same manner as in the analogous formulae in this paper. The effect of 

the most critical imperfection on each structure is almost identical (compare 

this equation with Equation (26)). 

X /Ic is the ratio of the buckling load to the classical buckling load. 

With the restriction that the deformations be rotationally-symmetric, 

T h m p ~ o n ' ~ )  has shown, on the basis of Koiter's general theory that the slope 
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of the pressure-deflection curve is negative in the Initial post-buckling 

regime. 

although the sphere will be imperfection-sensitive it will not necessarily be 

significantly so. In fact, the rotationally-symmetric analysis indicates that 

for comparable reductions in the:buckling pressure the imperfection magnitudes 

must be (relative to the shell thickness) on the order of t h e s  the 

values predicted by the present analysis. 

precludes the possibility of the strong coupling between critical modes which 

. 
The value of this slope, however, is extremely small implying that 

The rotational-symmetry restriction 

has been demonstrated here. 

LITZITATIONS OF GENERAL THEORY 

As previously emphasized, one can have confidence in the general theory 

only when the terma dropped from the potential energy expression are 

sufficiently s m a l l  conpared to the terms retained. In particular, the larger 

the imperfections the more one should question the buckling load predictions. 

When the imperfectton is in the form of a buckling mode with one zero wave 

number it ie possible to obtain an independent estimate of the buckling 

pressure of the spherical shell. If we take an imperfection in the form of 

X - 
w - a cos qo E 

the nonlinear shallow shell equations for an initially imperfect spherical 

shell admit an exact solution for the prebuckling deformation of the shell, and 

the deformation is independent of the y coordinate. At a certain value of 

the external pressure bifurcation from this y-independent deformation occurs. 

The approximate calculation for determining the relation of the bifurcation 

pressure to the hiperfection is sketched briefly in the Appendix. 

calculation for the effect of axisynmretric imperfections on the buckling load 

The analogous 
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The (2) . of cylindrical shells -has been given a careful treatment by Koiter. 

method of calculation insures that the estimate of the bifurcation pressure, 

although approximate, is an upper bound to the actual bifurcation pressure. 

The results of this calculation ate shown in Figure 5 where the upper bound 

results can be compared with the general theory predictions for the same 

imperfection, Equation (25). 

shell, is surprisingly good even for imperfections which reduce the buckling 

The agreement, as in the case for the cylindrical 

load to as little as thirty percent of the classical value. For small 

imperfections the upper bound estimate and the general theory prediction 

approach each other asymptotically. 

APPLICATION TO SPHEXICAL CAPS 

The conclusions reached with regard to the effects of imperfections on 

shallow sections of complete spherical shells obviously apply to spherical caps 

if the buckling wave lengths are small compared to the base dimension of the 

cap. The shortest buckle wave length is 

To obtain a rough estimate of range in which the results of the present analysis 

should be at least partially applicable,we will demand, quite arbitrarily, that 

the above wave length be less than one third the base diameter of the cap. 

this constraint it is easily shown that the shell rise H to the thickness h 

With 

must satisfy 
.m 

In terms of the frequently defined shallowness parameter X = 2(3(1-~~))~’~ 

this implies that X 371 . 
It is interesting to note that Huang (lo) has calculated the buckling 
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. prgssxzre f o r  iziithI,Xy perfect spherical caps vbich are clamped on the base 

edge. For suf f ic ien t ly  large rise t o  height, A > 3% say, the  buckling pressure 

is about eighty-five percent of the pressure necessary t o  buckle a complete 

perfect  sphere v l t h  the  same radius of curvature and thickness. Experimmtd 

data  i n  tbis range shows considerable scatter with buckling pressures i n  many 

instances less than t h i r t y  percent of t h e  value predicted f o r  the  perfect  cap. 

It seems clear that in i t ia l  imperfections account f o r  the  discrepancy between 

the experimental data and the  results f o r  t he  i n i t i a l l y  perfect  cap. 

APPENDIX: UPPER BOUEJD CALCULATION 

W e  consider a shallow spherical  section with an imperfection in the  form 

x ;; = cos q, 

The nonlinear shallow s h e l l  equations f o r  an i n i t i a l l y  imperfect spherical  

s h e l l  a h i t  a r e l a t ive ly  simple, exact prebuckling solution f o r  an 

imperfection of the form (A-l).' This solut ion is 

where w and f are zero prior t o  buckling. Buckling occurs with bifurcation 

from t h i s  y-independent prebuckling solution. 

the  pressure 

Thus we look f o r  the  value of 

p a t  which the  nonlinear shallow shell equations admit nonzero 

' For a y-independent i n i t i a l  imperfection the shallow s h e l l  equations are 
- 

t o  the l e f t  hand s ide  of mW,= a l te red  by appending the  term 

Equation (23 and +W w t o  the  l e f t  hand s ide  of Equation (3). 
S J Y  ,= 

-F 
- 
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' S ~ U ~ ~ U R S  far M a d  f . S~;bs t f tu t f tg  (A-2) and (A-3) into the fuii non- 

linear equations for an initially imperfect spherical shell and then 

linearizing with respect to w and f , we obtain two homogeneous, nonconstant- 
coefficient equations In w and f for determining the eigenvalue p . In 

the interests of brevity these equations will not be listed here. 

approximate method of solution of this eigenvalue problem, only described below, 

is the subject of a paper by biter(*) for the analogous problem of a cylinder 

with sutisymmetric imperfections. 

* 

The 

One of the two linear eigenvalue equations 16 a compatibility equation 

which is solved exactly for f in terms of an assumed w 

1 
w - sin(y qo $)sin(yqo $1 

where y is a free parameter. Then, E and w are used in conjunction vith 

the Raleigh-Ritz method to solve the second equation, an equilibrium equation, 

approximately and to obtain an equation for the eigenvalue. 

equation relating p and -i is 

The eigenvalue 
* 

* * * 
(l-~*/p,)~ (Q2+1-2Qp /pc) - Cy2t(1-p /pC) (p /Pc+2/Q) 

(A-4)  + ( c y 2 e ~ 2 ~ ~ 2 + ( 9 / 4 + v 2 ) - 2 )  - 0 

where Q = 1/4 + y2 . 
This approximate method of solution insures that the estimate of the 

* - 
buckling pressure p for a given imperfection 6 is an upper b o d  t o  the 

exact bifurcation pressure. In calculating p for a given value of the 

free parameter y is chosen so that the prediction of p based on (A-4) 

is a minimum. 

they can be compared with the predictions of the general theory. 

* 
* 

The results of these calculations are plotted in Figure 5 where 



\ *  

-22- I 

1. 

2. 

3. 

4. 

5 .  

6. 

7. 

8. 

9. 

10. 

Koiter, W. T., "Elastic Stability and Post-Buckling Behavior", Proc. Symp. 

'Nonlinear Problems', edited by R. E. Langer, University of Wisconsin Press, 

p. 257 (1963). 

Koiter, W, T., "The Effect of Axisymraetric Imperfections on the Buckling Of 

Cylindrical Shells under A x i a l  C~mpression", Koninkl. Ned. AI&. Wetenschap. 

Proc. Ser. B, 66, pp. 265-279 (1963). 

Thompson, J. M. T., "The Rotationally-Symmetric Brancing Behaviour of a 

Complete Spherical Shell", Koninkl. Nederl. &ad. 

Sere B, 67, pp. 295-311 (1964). 

Thompson, J. H. T., "The Elastic Instability of a Complete Spherical Shell", 

Aero. Quart., XIII, 189 (1962). 

Gabril'iants, A. G. and Peodos'ev, V. I., "Axially Symmetric Forms of 

Equilibrium of an Elastic Spherical Shell under Uniformly Distributed 

Pressure", Prikl. Hat. Mek., 25, 1629 (1961). 

Sabir, A. B., "Stress Distribution and Elastic Instability of Spherical 

Shells", dissertation University College, Cardiff (1962). 

Sanders, J. L., "Nonlinear Theories for Thin Shells", Quart. Appl. Math., 

Vol. XXI, No. 1, April (1963). 

Fliigge, W., '*Stresses in Shells", Springer-Verlag (1960) . 
Budianskp, B. and Hutchinson, J., "Dynamic Buckling of Imperfection-Sensitive 

Structures", Proc. of the Eleventh International Congress of Applied 

Pfechanics (1964). (Springer: Julius Spring-Verlag, Berlin, to be 

published .) 

Huang, N. C., "Unsymmetrical Buckling of Thin Shallow Spherical Shells", 

J. Appl. Mech., Septaber (1964). 

Van Wetenschap. Proc. 



FIG. I SHALLOW SECTION OF COMPLETE SPHERE 
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SHALLOW SECTION OF PERFECT SPHERE 




